สรุปเนื้อหาคณิตม.3 เรื่องวงกลม

พอพูดชื่อ “วงกลม” พี่ว่าคงไม่มีใครที่ไม่รู้จักชื่อนี้แน่นอน และถ้าเราพูดถึงวงกลมในวิชาคณิตศาสตร์ น้อง ๆ หลายคนอาจจะคุ้นหูกันมาบ้าง เพราะเคยเรียนผ่านมาแล้วตอนชั้นประถม แต่เราจะได้กลับมาเจอเรื่องนี้กันอีกครั้งในเนื้อหา วงกลม ม.3 ด้วยน้าา

ใครที่กำลังสงสัยว่าเนื้อหาจะเป็นยังไง พี่ก็ได้สรุปมาให้ทุกคนหมดแล้วในบทความนี้ ตั้งแต่ส่วนประกอบของวงกลม ไปจนถึงทฤษฎีบทต่าง ๆ (แถมท้ายบทความยังมีแบบฝึกหัดแจกฟรีด้วย !!) รับรองว่าเนื้อหาสนุกกว่าเดิมแน่นอนน ถ้าพร้อมแล้ว ไปลุยกันเลยย > <

ส่วนประกอบต่าง ๆ ของวงกลม

ส่วนประกอบของวงกลม ในทฤษฎีวงกลม ม.3
องค์ประกอบต่าง ๆ ของทฤษฎีวงกลม ม.3

จากรูปด้านบนนี้ จะเห็นว่ามีส่วนประกอบหลัก ๆ อยู่  11 องค์ประกอบ คือ

  1. จุดศูนย์กลาง คือ จุดที่จุดทุกจุดบนวงกลมที่อยู่ห่างจากจุดตรึงนี้เป็นระยะเท่ากัน
  2. เส้นผ่านศูนย์กลาง คือ ส่วนของเส้นตรงที่ผ่านจุดศูนย์กลาง และมีจุดปลายทั้งสองอยู่บนเส้นรอบวง
  3. รัศมี คือ ส่วนของเส้นตรงที่ลากจากจุดศูนย์กลางกับ จุดใด ๆ บนเส้นรอบวง
  4. เส้นรอบวง คือ เส้นโค้งที่ปิดบนระนาบที่แสดงเป็นวงกลม
  5. คอร์ด คือ ส่วนของเส้นตรงที่ลากจากเส้นรอบวงฝั่งหนึ่ง ไปยังเส้นรอบวงอีกฝั่งหนึ่ง
  6. เซกเมนต์ คือ พื้นที่ที่ล้อมถูกรอบด้วยส่วนของเส้นรอบวงและคอร์ด
  7. เซกเตอร์ คือ พื้นที่ที่ล้อมถูกรอบด้วยส่วนของเส้นรอบวงและรัศมี 2 เส้น
  8. เส้นตัดวงกลม คือ เส้นตรงที่ตัดวงกลมสองจุด
  9. จุดตัดวงกลม คือ จุดที่เกิดจากการตัดกันระหว่างวงกลมและเส้นตัดวงกลม
  10. เส้นสัมผัสวงกลม คือ เส้นตรงที่ตัดวงกลมหนึ่งจุด
  11. จุดสัมผัสวงกลม คือ จุดที่เกิดจากการตัดกันระหว่างวงกลมและเส้นสัมผัสวงกลมเพียงหนึ่งจุด

ทฤษฎีบทวงกลม

หลังจากเรารู้จักส่วนต่าง ๆ ของวงกลมกันมาแล้ว เรามาดูกันเลยว่าในบทนี้มีทฤษฎีบทที่สำคัญ ๆ อะไรบ้าง
โดยพี่จะแบ่งทฤษฎีบทออกเป็น 3 กลุ่มใหญ่ ๆ เป็นทฤษฎีบทที่เกี่ยวกับ

1. มุมที่จุดศูนย์กลางและมุมในส่วนโค้งของวงกลม

2. คอร์ดของวงกลม

3. เส้นสัมผัสของวงกลม

แต่ละทฤษฎีบทจะมีรายละเอียดยังไงกันบ้าง ไปอ่านต่อกันได้เลย

มุมที่จุดศูนย์กลางและมุมในส่วนโค้งของวงกลม

ทฤษฎีบทวงกลมที่ 1

ในวงกลมเดียวกัน มุมที่จุดศูนย์กลางจะมีขนาดเป็นสองเท่าของขนาดของมุมในส่วนโค้งของวงกลมที่รองรับด้วยส่วนโค้งเดียวกัน 

ทฤษฎีบทวงกลม ม.3 เรื่องมุมที่จุดศูนย์กลางและมุมในส่วนโค้งของวงกลม​

จากรูป จะเห็นว่า A\widehat{O}C ซึ่งเป็นมุมที่จุดศูนย์กลาง และ A\widehat{B}C ซึ่งเป็นมุมในส่วนโค้ง ที่ถูกรองรับด้วยส่วนโค้งเดียวกัน คือส่วนโค้ง AC แล้ว A\widehat{O}C (มุมที่จุดศูนย์กลาง) จะใหญ่เป็นสองเท่าของ A\widehat{B}C (มุมในส่วนโค้ง)

ข้อควรระวัง

อย่าจำสลับกันน้า มุมในส่วนโค้งต้องเป็นมุมที่มีขนาดเล็กกว่าเสมอ (สังเกตได้จากรูปข้างต้น) ถ้า A\widehat{O}C=60^{\circ} 
แล้ว A\widehat{B}C=30^{\circ} 

ซึ่งทฤษฎีบทนี้ สามารถใช้ได้ 3 แบบ ดังรูป จะเห็นว่าทั้งสามแบบมีหน้าตาที่ไม่เหมือนกัน โดยเฉพาะแบบที่ 2 และแบบที่ 3 มองเร็ว ๆ บางคนอาจจะคิดว่านี่คือคนละทฤษฎีบทกันหรือเปล่านะ รูปไม่เห็นจะเหมือนกันเลย แต่ถ้าเราสังเกตจากส่วนโค้งที่รองรับมุม แล้วมันเหมือนกับแบบที่ 1 เลย

ข้อควรระวัง

น้อง ๆ ต้องสังเกตดี ๆ น้า ว่ามุมที่จุดศูนย์กลางและมุมในส่วนโค้งถูกรองรับด้วยส่วนโค้งใด และจะต้องเป็นส่วนโค้งเดียวกันหรือยาวเท่ากันเท่านั้นนะ ถึงจะใช้ทฤษฎีบทที่ 1 นี้ได้ 

ทฤษฎีบทวงกลมที่ 2

ในวงกลมที่เท่ากันทุกประการหรือในวงกลมวงเดียวกัน ถ้ามุมในส่วนโค้งของวงกลมมีขนาดเท่ากัน
แล้วส่วนโค้งที่รองรับมุมเหล่านั้นจะยาวเท่ากัน

ซึ่งทฤษฎีบทนี้ จะเป็นจริงทั้งขาไปและขากลับ ซึ่งขากลับคือ ในวงกลมที่เท่ากันทุกประการหรือในวงกลมวงเดียวกัน
ถ้าส่วนโค้งที่รองรับมุมยาวเท่ากัน แล้วมุมในส่วนโค้งที่รองรับด้วยส่วนโค้งเหล่านั้นจะมีขนาดเท่ากัน หรือสามารถกล่าวได้ว่า มุมในส่วนโค้งของวงกลมมีขนาดเท่ากัน ก็ต่อเมื่อส่วนโค้งที่รองรับมุมยาวเท่ากัน นั่นเอง

ทฤษฎีบทเกี่ยวกับวงกลม ม.3 กรณีที่วงกลมเท่ากันทุกประการ

รูปที่ 1 และ 2 ข้างต้นนี้ ถ้ามองเร็ว ๆ อาจจะคิดว่ามันคือคนละทฤษฎีบทกันและไม่เกี่ยวกันโดยสิ้นเชิง แต่ในความจริงแล้วไม่เป็นแบบนั้นน้า

ถ้าลองเริ่มสังเกตจากรูปที่ 1 จะเห็นว่า A\widehat{D}B และ B\widehat{D}C มีขนาดเท่ากัน แล้วจะได้ว่าส่วนโค้ง AB ยาวเท่ากับ
ส่วนโค้ง BC (นั่นก็คือ ขาไป) หรือจะมองในทางกลับกันก็ได้นะ คือ ถ้าส่วนโค้งที่รองรับมุมยาวเท่ากัน มุมในส่วนโค้งนั้น
ก็จะมีขนาดเท่ากันไปด้วย (นั่นก็คือ ขากลับ)

แล้วถ้าเราลองพิจารณาในทำนองเดียวกัน รูปที่ 2 มุมที่รองรับด้วยส่วนโค้ง NP คือ N\widehat{M}P และ N\widehat{Q}P 
แล้วทั้งสองมุมจะมีขนาดเท่ากัน (ขากลับ) หรือ มุมที่รองรับด้วยส่วนโค้ง MQ คือ M\widehat{N}Q และ M\widehat{P}Q แล้วทั้งสองมุม
จะมีขนาดเท่ากันเช่นเดียวกัน (ขาไป)

เราจะใช้ทฤษฎีบทนี้เมื่อเจอส่วนโค้งที่ยาวเท่ากัน แล้วสามารถบอกได้ว่ามุมที่เกิดจากส่วนโค้งนั้นมีขนาดเท่ากัน หรือเมื่อเจอมุมที่เกิดจากส่วนโค้งเดียวกัน แล้วมุมที่เกิดขึ้นนั้นก็จะมีขนาดเท่ากันด้วย

ข้อสังเกต

ส่วนโค้ง MQ มีความยาวมากกว่าส่วนโค้ง NP แล้วมุมที่เกิดจากส่วนโค้ง MQ มีขนาดมากกว่ามุมที่เกิดจากส่วนโค้ง NP ด้วยน้า

ทฤษฎีบทวงกลมที่ 3

มุมในครึ่งวงกลมมีขนาด 90 องศา หรือหนึ่งมุมฉาก

ทฤษฎีบทเกี่ยวกับวงกลม ม.3 เรื่องมุมในครึ่งวงกลมมีขนาดเท่ากับ 90 องศา

จากรูป \overline{AB} เป็นเส้นผ่านศูนย์กลางของวงกลม โดยมี C เป็นจุดบนส่วนโค้งของวงกลม และ A\widehat{C}B เป็นมุมในส่วนโค้งของวงกลม จะมีขนาดเท่ากับ 90^{\circ}

ถ้ารูปสามเหลี่ยม ABC ที่แนบอยู่ด้านในของวงกลมมี \overline{AB} เป็นเส้นผ่านศูนย์กลางของวงกลม ไม่ว่าเราจะเลื่อนจุด C
ไปบนส่วนโค้งของวงกลมที่ใดก็ตามที่ไม่ทับกับจุด A และ จุด B รูปสามเหลี่ยมที่ได้จะแบนหรือใหญ่แค่ไหน มุม C ก็จะเป็นมุมฉากเสมอ

ทฤษฎีบทวงกลมที่ 4

ถ้ารูปสี่เหลี่ยมใด ๆ เป็นรูปสี่เหลี่ยมแนบในวงกลม แล้วผลบวกของขนาดของมุมตรงข้ามจะเท่ากับ 180 องศาหรือ
สองมุมฉาก

ทฤษฎีบทเกี่ยวกับวงกลม ม.3 เรื่องรูปสี่เหลี่ยมในวงกลมจะมีผลบวกขนาดของมุมตรงข้ามเท่ากับ 180 องศา

จากรูปด้านซ้าย จะเห็นว่าจุด A, B, C, และ D เป็นจุดบนส่วนโค้งของวงกลม จะเห็นว่ารูปสี่เหลี่ยม ABCD เป็นรูปสี่เหลี่ยมที่แนบอยู่ด้านในของวงกลม ซึ่งมีมุมภายในของรูปสี่เหลี่ยมเป็น a, b, c, d

ถ้ามุม A อยู่ตรงข้ามกับมุม C แล้วผลบวกของ A กับ C จะเท่ากับ 180 องศา ในทำนองเดียวกัน ถ้ามุม B อยู่ตรงข้าม
กับมุม D แล้วผลบวกของ B กับ D จะเท่ากับ 180 องศา

ข้อควรระวัง

จากรูปด้านขวาข้างต้น จุด O ไม่ได้อยู่บนส่วนโค้งของวงกลม
ดังนั้น รูปสี่เหลี่ยม GONE ไม่เรียกว่าเป็นรูปสี่เหลี่ยมที่แนบอยู่ในวงกลมน้า

ตัวอย่างที่ 1       

จากรูป กำหนดให้ \overline{AD} และ \overline{BC} เป็นเส้นผ่านศูนย์กลางของวงกลม O และ C\widehat{E}D= 120^{\circ} จงหาขนาดของ A\widehat{B}C

ตัวอย่างประกอบทฤษฎีวงกลม ม.3

วิธีทำ    

จาก ทฤษฎีบทที่ 1 ในวงกลมเดียวกัน มุมที่จุดศูนย์กลางจะมีขนาดเป็นสองเท่าของขนาดของมุมในส่วนโค้งของวงกลมที่รองรับด้วยส่วนโค้งเดียวกันและ C\widehat{E}D= 120^{\circ}   
จะได้ว่า มุมกลับ COD= 240^{\circ}

 

จาก วงกลมมีขนาดมุมที่จุดศูนย์กลางรวมกันเป็น 360^{\circ}
ดังนั้น C\widehat{O}D= 360-240=120^{\circ}

 

จาก A\widehat{O}B และ C\widehat{O}D มุมตรงข้ามจะมีขนาดเท่ากัน
จะได้ว่า A\widehat{O}B=C\widehat{O}D
และ \overline{AO}, \overline{BO} เป็นรัศมีของวงกลมเดียวกัน
จะได้ว่า \overline{AO}=\overline{BO}   
ดังนั้น \Delta AOB เป็นรูปสามเหลี่ยมหน้าจั่ว

 

จาก ขนาดของมุมภายในทั้งสามมุมของรูปสามเหลี่ยมรวมกันได้ 180^{\circ} และมุมที่ฐานของรูปสามเหลี่ยมหน้าจั่วทั้งสองมุม
มีขนาดเท่ากัน

จะได้ว่า A\widehat{B}C= \frac{180-120}{2}=30^{\circ}                

ตอบ 30^{\circ}

คอร์ดของวงกลม

ทฤษฎีบทวงกลมที่ 5

ส่วนของเส้นตรงซึ่งผ่านจุดศูนย์กลางของวงกลม และตัดกับคอร์ดที่ไม่ใช่เส้นผ่านศูนย์กลางจะมีสมบัติดังนี้

  1. ถ้าส่วนของเส้นตรงแบ่งครึ่งคอร์ด แล้วส่วนของเส้นตรงนั้นจะตั้งฉากกับคอร์ด
  2. ถ้าส่วนของเส้นตรงตั้งฉากกับคอร์ด แล้วส่วนของเส้นตรงนั้นจะแบ่งครึ่งคอร์ด

จากทฤษฎีบทที่ 5 จะเห็นว่า ข้อที่ 1. และข้อที่ 2. เปรียบเสมือนขาไปและขากลับซึ่งกันและกัน แสดงว่าประโยคนี้เป็นจริง
ทั้งขาไปและขากลับ นั่นเอง หรือสามารถกล่าวเพิ่มได้อีกว่า เส้นตรงที่ตั้งฉากและแบ่งครึ่งคอร์ดของวงกลมจะผ่านจุดศูนย์กลางของวงกลมนั้น

ทฤษฎีบทวงกลม ม.3 เรื่องคอร์ดของวงกลม

จากรูปที่ 1 เมื่อลากเส้นตรงผ่านจุด O มาตั้งฉาก \overline{AB} ซึ่งเป็นคอร์ดของวงกลม O ที่จุด C จะทำให้ความยาวของ \overline{AC} และ \overline{BC} ยาวเท่ากัน (เป็นดังรูปที่ 2)

ทฤษฎีบทวงกลมที่ 6

ในวงกลมเดียวกัน ถ้าคอร์ดสองเส้นยาวเท่ากัน แล้วคอร์ดทั้งสองนั้นจะอยู่ห่างจากจุดศูนย์กลางเป็นระยะเท่ากัน
ซึ่งทฤษฎีบทนี้ จะเป็นจริงทั้งขาไปและขากลับ ซึ่งขากลับ คือ ในวงกลมเดียวกัน ถ้าคอร์ดสองเส้นอยู่ห่างจากจุดศูนย์กลางเป็นระยะเท่ากัน แล้วคอร์ดทั้งสองนั้นจะยาวเท่ากัน

ทฤษฎีบทวงกลม ม.3 เรื่องคอร์ด

จากรูป น้อง ๆ อาจเริ่มสังเกตจากความยาวของคอร์ดทั้งสองเส้นในวงกลมมีความยาวเท่ากัน เลยทำให้ระยะห่างระหว่างจุด O (จุดศูนย์กลาง) กับคอร์ดเส้นทางซ้าย และ ระยะห่างระหว่างจุด O (จุดศูนย์กลาง) กับคอร์ดเส้นทางขวาห่างเท่ากัน

ในทางกลับกัน ถ้าเริ่มสังเกตจากระยะห่างระหว่างจุด O (จุดศูนย์กลาง) กับคอร์ดเส้นทางซ้าย และ ระยะห่างระหว่างจุด O (จุดศูนย์กลาง) กับคอร์ดเส้นทางขวาห่างเท่ากัน เลยทำให้ ความยาวของความยาวของคอร์ดทั้งสองเส้นในวงกลมนี้ยาวเท่ากันนั่นเอง

ตัวอย่างที่ 2       

จากวงกลม O ที่กำหนดให้ จงหาค่าของ x

ตัวอย่างทฤษฎีบทวงกลม ม.3 เรื่องคอร์ดของวงกลม

วิธีทำ    

จาก ทฤษฎีบทที่ 5 ส่วนของเส้นตรงที่ลากจากจุดศูนย์กลางมาแบ่งครึ่งคอร์ดจะตั้งฉากกับคอร์ด

จะได้ว่า C\widehat{B}O= 90^{\circ}                   

จากทฤษฎีบทพีทาโกรัส จะได้

 BO^{2}+BC^{2}=CO^{2}  

 x^{2}+12^{2}=13^{2}  

 x^{2}=13^{2}-12^{2}  

 x^{2}=25  

 x=-5, 5  

เนื่องจาก x เป็นความยาวของ \overline{BO}  

ดังนั้น  x=5  

ตอบ x=5  

เส้นสัมผัสของวงกลม

มาถึงหัวข้อสุดท้ายกันแล้วนั่นก็คือเส้นสัมผัสวงกลมและรัศมีนั่นเอง ซึ่งหัวข้อนี้มีทฤษฎีบทที่น่าสนใจดังนี้

ทฤษฎีบทวงกลมที่ 7

เส้นสัมผัสวงกลมจะตั้งฉากกับรัศมีของวงกลมที่จุดสัมผัส

ทฤษฎีบทวงกลม ม.3 เรื่องเส้นสัมผัสวงกลม

ถ้าเราลากเส้นตรงไปสัมผัสกับวงกลม โดยที่จุด P เป็นจุดสัมผัสดังรูป เราจะเรียกเส้นตรงนั่นว่า เส้นสัมผัส
และมุมที่เกิดจากเส้นสัมผัสและรัศมี \overline{OP} จะเป็นมุมฉากเสมอ

ลองสังเกตดูกันนะว่า เส้นสัมผัสจะตัดผ่านวงกลมเพียงแค่จุดเดียวซึ่งก็คือจุดสัมผัส แต่เมื่อเราลากเส้นตรงเส้นหนึ่งผ่านวงกลมแล้วได้จุดตัด 2 จุด เราจะเรียกว่าเส้นตรงนั้นว่า เส้นตัด

น้อง ๆ บางคนอาจจะคิดว่าไม่สำคัญหรอก ทฤษฎีบทที่ 7 ก็แค่ทฤษฎีบทเล็ก ๆ แต่ที่จริง ๆ แล้วเป็นทฤษฎีบทที่เจอได้
ค่อนข้างบ่อย และยังสามารถใช้ได้ในระดับชั้น ม.ปลายด้วยย

ทฤษฎีบทวงกลมที่ 8

ส่วนของเส้นตรง 2 เส้น ที่ลากจากจุดจุดหนึ่งภายนอกวงกลมมาสัมผัสวงกลมวงเดียวกันจะยาวเท่ากัน

ทฤษฎีบทเกี่ยวกับวงกลม ม.3 เรื่องเส้นสัมผัสวงกลม

กำหนดให้จุด P เป็นจุดที่อยู่นอกวงกลม ลากเส้นจากจุด P มาสัมผัสวงกลมที่จุด R และจุด Q

จะได้

  1. P\widehat{R}O = P\widehat{Q}O = 90^{\circ} (จากทฤษฎีบทที่ 7 ที่ได้อธิบายไป)
  2. OP = OP (เป็นส่วนของเส้นตรงเดียวกัน)
  3. OR = OQ (รัศมีของวงกลม)

จากเหตุผลทั้ง 3 ข้อนี้ทำให้ \Delta POR และ \Delta POQ เป็นรูปสามเหลี่ยมที่เท่ากันทุกประการแบบด้าน-มุม-ด้านนั่นเอง
เราจะได้ว่า PR = PQ เพราะเป็นด้านที่สมนัยกัน ตามรูปและทฤษฎีบทข้างต้นเลย

ข้อควรระวัง

หากน้อง ๆ จะใช้ทฤษฎีบทนี้คือเส้นที่ลากจากจุดนอกวงกลมจะต้องเป็นเส้นสัมผัสวงกลมเท่านั้นนะ หากลากเส้นจาก
จุดนอกวงกลมผ่านวงกลมแล้วกลายเป็นเส้นตัดวงกลม (มีจุดตัด 2 จุด) จะไม่สามารถใช้ทฤษฎีบทนี้ได้

ทฤษฎีบทวงกลมที่ 9

มุมที่เกิดจากคอร์ดและเส้นสัมผัสวงกลมที่จุดสัมผัส จะมีขนาดเท่ากับขนาดของมุมในส่วนโค้งของวงกลมที่อยู่ตรงข้ามกับคอร์ดนั้น

ทฤษฎีบทวงกลม ม.3 เกี่ยวกับมุมที่เกิดจากคอร์ดและเส้นสัมผัสวงกลม

ลองสังเกตรูปที่ 1 กัน จากรูปเนี่ยเราจะเห็นว่า A\widehat{C}D มีแขนของมุมข้างหนึ่งเป็นเส้นสัมผัสวงกลมที่ผ่านจุด C กับ \overline{AC} ซึ่งเป็นคอร์ดของวงกลม O และมุมในส่วนโค้งที่อยู่ตรงข้ามคอร์ด \overline{AC} ก็คือ A\widehat{B}C จากทฤษฎีบทกำลังจะบอกว่า A\widehat{C}D = A\widehat{B}C

จากนั้นมาดูรูปที่ 2 จะได้ว่า B\widehat{C}E มีแขนของมุมข้างหนึ่งเป็นเส้นสัมผัสวงกลมที่ผ่านจุด C กับ \overline{BC} ซึ่งเป็นคอร์ดของวงกลม O และมุมในส่วนโค้งที่อยู่ตรงข้ามคอร์ด  \overline{BC} ก็คือ C\widehat{A}B จากทฤษฎีบทกำลังจะบอกว่า
B\widehat{C}E = C\widehat{A}B

ข้อสังเกต

ให้น้อง ๆ สังเกตคอร์ดตามภาพให้ดี ว่ามุมที่เราได้มาในตอนตอนติดกับคอร์ดเส้นใด จากนั้นอีกมุมหนึ่งที่มีขนาด
เท่ากัน จะอยู่ตรงข้ามกับคอร์ดนั้น โดยสังเกตได้จากลูกศรที่พี่เขียนไว้ให้ในรูปข้างต้น

ตัวอย่างที่ 3       

จากวงกลม O และเส้นสัมผัสที่กำหนดให้ จงหาค่าของ x

ตัวอย่างประกอบทฤษฎีบทวงกลม ม.3 เรื่องเส้นสัมผัสวงกลม

วิธีทำ    

เนื่องจาก \overrightarrow{BC} เป็นเส้นสัมผัส 

และ ทฤษฎีบทที่ 7 เส้นสัมผัสวงกลมจะตั้งฉากกับรัศมีของวงกลมที่จุดสัมผัส

จะได้ A\widehat{C}B = 90^{\circ}

จากผลรวมของขนาดของมุมภายในรูปสามเหลี่ยมเท่ากับ 180^{\circ}

จะได้ C\widehat{A}B= 180-(90+60)=30^{\circ}  

ตอบ x=30^{\circ}      

ดูคลิปติว วงกลม ม.3

ติดตามคลิปติวฟรีอื่น ๆ จากพี่ปั้น ได้ทาง YouTube Channel : SmartMathPro

อ่านมาจนถึงตรงนี้ พี่ว่าหลายคนคงแอบปาดเหงื่อให้กับทฤษฎีบทวงกลมที่มีเยอะมากกันอยู่ใช่ไหม แต่พี่เชื่อนะว่า ถ้า
น้อง ๆ ทบทวนเนื้อหาและฝึกทำโจทย์เรื่องวงกลมอยู่บ่อย ๆ ก็จะเข้าใจมากขึ้น ทำโจทย์ได้คล่องขึ้น พร้อมไปอัปคะแนนสอบกลางภาคแน่นอนน (และพี่ก็มีแบบฝึกหัดมาแจกฟรีให้ทุกคนด้วย ไปโหลดมาฝึกทำกันได้เลยย >>> แจกฟรีแบบฝึกหัดวงกลม ม.3

ส่วนใครที่ยังมีจุดที่สงสัยในบทวงกลม รวมถึงเนื้อหาอื่น ๆ ของคณิต ม.3 และต้องการคนช่วยไกด์เนื้อหาให้เข้าใจมากขึ้น พี่ขอแนะนำคอร์สติวคณิต ม.3 จาก SmartMathPro เลยย คอร์สนี้มีทั้งเนื้อหาของทั้งเทอม 1 และเทอม 2 ครบทุกบท ซึ่งพี่จะปูพื้นฐานให้แบบละเอียด เจาะลึกเฉพาะบท อิงตามหลักสูตร สสวท. พร้อมพาตะลุยโจทย์และแบบฝึกหัดจำนวนมาก โดยเริ่มจากง่ายไปจนถึงระดับข้อสอบแข่งขันจากสนามต่าง ๆ แถมยังมี Quiz ทบทวนความเข้าใจแต่ละบทให้ด้วยน้า ดังนั้นใครที่พื้นฐานไม่แน่นก็เรียนได้ ไม่ต้องกังวลเลยว่าจะเรียนไม่ทัน !!

แต่ถ้าโรงเรียนของน้อง ๆ สอนไม่ตรงตามคอร์สที่มี ก็สามารถเลือกเรียนแบบแยกบทได้เลยย เริ่มต้นเพียง 360 บาทเท่านั้น ใครสนใจดูรายละเอียดเพิ่มเติม คลิก ได้เลยน้าา

บทความ แนะนำ

บทความ แนะนำ

สรุปเนื้อหาคณิตม.3 เรื่องการแยกตัวประกอบของพหุนามที่มีดีกรีสูงกว่าสอง
สรุป แยกตัวประกอบพหุนามที่มีดีกรีสูงกว่าสอง ม.3 พร้อมโจทย์+เฉลย
สรุปเนื้อหาคณิตม.3 อสมการเชิงเส้นตัวแปรเดียว
สรุป อสมการเชิงเส้นตัวแปรเดียว ม.3 พร้อมแจกโจทย์และเฉลย
สรุปเนื้อหาคณิตม.3 เรื่องสมการกำลังสองตัวแปรเดียว
สรุป สมการกำลังสองตัวแปรเดียว ม.3 พร้อมแจกโจทย์ฟรี !!
สรุปเนื้อหาคณิต ม.3 เรื่อง สถิติ (แผนภาพกล่อง)
สถิติ ม.3 (แผนภาพกล่อง) สรุปเนื้อหา พร้อมแจกโจทย์และเฉลยฟรี!
สรุปเนื้อหาคณิตศาสตร์ ม.3 เรื่อง พาราโบลา (กราฟฟังก์ชันกำลังสอง)
สรุป พาราโบลา (ฟังก์ชันกำลังสอง) ม.3 พร้อมแจกสูตรและโจทย์ฟรี
สรุปเนื้อตรีโกณมิติ ม.3 พร้อมโจทย์และวิธีการทำ
ตรีโกณมิติ ม.3 สรุปเนื้อหาพร้อมโจทย์แบบจัดเต็ม จบในที่เดียว !
สรุปเนื้อหาคณิตม.3 เรื่องความคล้าย
สรุปคณิตศาสตร์ “ความคล้าย ม.3” พร้อมแจกโจทย์ปัญหาและเฉลยฟรี !!

สำหรับน้อง ๆ ที่สนใจสอบถามข้อมูลเพิ่มเติม รวมถึงติดตามข่าวสารต่าง ๆ ที่อัปเดตอย่างเรียลไทม์ ได้ที่

Line : @smartmathpronews 

FB : Pan SmartMathPro ติวคณิต By พี่ปั้น 

IG : pan_smartmathpro

Twitter : @PanSmartMathPro 

Tiktok : @pan_smartmathpro

Share